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Wave-induced boundary layers in a stratified fluid 
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The boundary layers associated with gravity waves in a fluid with a linear 
variation of density are discussed in order to examine the steady Eulerian 
velocities induced by the Reynolds stress. For the case of a standing wave, the 
induced steady motion is shown to decay in an outer boundary layer which 
represents a balance between buoyancy and diffusion when the wave slope is 
sufficiently small but when viscous decay effects are even smaller. When the 
wave slope is larger, it  would appear that two outer regions must be considered. 
Results for progressive waves are discussed only briefly, as they are qualitatively 
similar to the surface wave case. 

1. Introduction 
Thorpe (1968a, b )  has discussed recently the modification of internal gravity 

waves due to second-order, finite amplitude effects. In  order to supplement his 
discussion of the inviscid problem, we discuss here the modification of the flow 
due to viscous boundary layers existing at horizontal walls. 

Rayleigh (1884) and Longuet-Higgins (1952) have demonstrated that mean 
Eulerian velocities can be generated in wave-induced motions due to such bound- 
ary layers, when terms of the second order in amplitude are considered. For the 
case of a progressive wave, the mean vorticity generated in the boundary layer 
diffuses throughout the main body of the fluid (cf. Longuet-Higgins 1960). 
For the case of a standing wave, as Rayleigh demonstrated in his discussion of the 
Kundt’s dust tube phenomenon, the mean motion can decay, for a homogeneous 
fluid, in an outer region whose characteristic length is comparable to the wave- 
length. As discussed by Stuart (1966) and Riley (1965, 1967), Rayleigh’s con- 
clusion holds only when the Reynolds number associated with the steady induced 
flow is sufficiently small. When this condition does not hold, a second boundary 
layer can exist in which the mean motion decays. This layer, whose characteristic 
length can be much less than that of a wavelength but much greater than that 
of the inner Stokes layer, represents a balance between advection and diffusion 
and is therefore inherently non-linear in nature. For the case of a standing wave 
in a stratified fluid, we shall demonstrate that a second boundary layer can exist 
which represents a linear balance between buoyancy and diffusion. 
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2. Equations of motion and the inviscid solutions 
The stratification is taken to arise from a linear variation of temperature be- 

tween two parallel, horizontal walls, which bound the fluid and which are main- 
tained at  constant temperature. The Boussinesq approximation is made. The 
results should be representative of other smooth variations of density when this 
approximation is applicable. 

Consider a co-ordinate system positioned on the lower wall, which is a distance 
H from the upper wall, and let li: and y” denote distance parallel and perpendicular 
to the wall, respectively. Let 2. denote a characteristic disturbance amplitude, 
u a characteristic frequency, E a wave-number, $ a stream function for our 
assumed two-dimensional motion, g the acceleration due to gravity which acts in 
the direction of negative y”, and t time. We introduce the non-dimensional vari- 
ables x = &Z, y = nny”/H, T = d, 

(2.1) $ = ( i k H / n n ) $ ,  a = &H/nn,  e = EZ,} 

where G = @lag, v“ = - a $ / a ~ .  (2.2) 

The factor (nn), n being an integer, is to be associated with the particular mode 
considered (the above definitions allow the increasing importance of viscosity 
with n to be seen explicitly in the equations). 

The temperature is defined as 

!P = 2bP+ (yy”/H) + (ey/nn)  TI, 

P = P O P  +p”(P- !cO)l = P O P  +h{(y” lH)  + (.Inn) TI]. 

(2.3) 

(2.4) 

so that the density is given by the equation of state as 

The factors Po and Po are, respectively, a reference temperature and density, and 
we have defined 

The pressure is defined as 
p = BP0. 

vo being the kinematic viscosity, which, consistent with the Boussinesq approxi- 
mation, is taken to be constant. The temperature equation is 

(2.10) 

where P is the Prandtl number. 
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We assume that A 9 1, E < 1, and expand as 

@ = ~ E ' A - * ' J @ ~ ~ ,  
r, q 

(2.11) 

the expansion in half-powers of A being dictated by boundary-layer displace- 
ment effects. The governing equation for @oo is readily obtained as 

(2.12) 

which admits solutions for standing waves, say, of the form 

@oo = Asinysinxcosr, (2.13) 

Too = A sin y cos x sin 7, (2.14) 

satisfying the inviscid wall boundary conditions and a condition of constant wall 
temperature if 

(2.15) 

The frequency would have to be corrected for higher order viscous and non-linear 
effects, but our analysis will not extend to that order. Using (2.15), the vorticity 
equation can be expressed as 

The equations for @lo and Tlo, for the standing wave case, are 

and 

(2.17) 

(2.18) 

Particular solutions are 

and Tlo = - QA2 sin 2y cos27 + Flo(y). (2.19) 

We allow the existence of an arbitrary function plo(g) because it cannot be deter- 
mined further at  this stage. In  order to determine Tlo(y), we would have to con- 
sider terms of O(eA-l) in (2.10), at which order diffusive effects define the solution. 
In  order to obtain the governing equation, the convective terms would require 
that the solution be determined through O(A-4). But in order to obtain a solution 
at that stage, we would either have to allow for viscous decay of the wave (cf. 
Dore (1968)) or stipulate some forcing mechanism. Wewish to avoid this complica- 
tion and so suffer from our inability to define rigorously Fl0(y). A condition which 
has been applied by Thorpe (1968a, p. 512; 19686, pp. 582 and 588) results from 
stating that the unperturbed density of a particle originally at be equal to the 
density of the particle at y" + f ,  where f is the displacement, and, in order to close 
formally the problem, we choose to apply this (non-diffusive) condition. For the 
present case (cf. 2.3), we have 

@lo = 0 

(2.20) 
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Expanding fj in terms of E and using a Taylor’s expansion to expand about the 
mean location, we find pl0 = &A2sin2y, 

in order to satisfy the condition. 

(2.21) 

For the case of a progressive wave described by 

$oo = A sin y cos (x + 71, 

Too = Asinycos(x+~),  
(2.22) 

we find T,, = Flo(y) = iA2sin2y. (2.23) 

3. The Stokes layer solution for the stream function 
We now consider the wall regions, where Stokes type boundary layers, with 

thickness of O(A-4)’ are required. The form of the inviscid solutions suggest 
the definitions (of. $ 5  for further discussion of the temperature scaling) 

$ = $2h-4Y(X7x,r), T = ,/2A-*O(Y,x,r), (3.1) 

where Y =(RQy/J2). (3.2) 
Then (2.16) and (2.10) become 

and 

a 2  
(3.5) 

a 2  
V2 - __ + 2~2A-1- 

I - a y 2  ax2+ 
where 

Now 11. can be expanded in a manner similar to (2.11). We wish to emphasize the 
non-linear effects in the boundary layer and to avoid allowing for decay in the 
wave amplitude; we will therefore simply state that 

E B A-4, (3.6) 

so that the waves can be assumed to be of constant amplitude. On the basis of 
(3.3), it appears that buoyancy will have no effect upon the velocity field up to 
O(A-1). Therefore, the steady flow induced by the Reynolds stress will be the 
same as for a homogeneous fluid, at least within the Stokes layer. As we shall show 
later, this statement is not necessarily valid outside the Stokes layer. 

The pressure is constant up to O(R-l)  through the boundary layer so that it is 
simpler to work with the inner form of the x momentum equation (2.7).  We then 
obtain for a standing wave 

and 

where 
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The well-known solution of Yo0 is 

Yoo = &I sinx{foo( Y) e47+f&( Y) e-i7}, (3.10) 

where the asterisk denotes the complex conjugate and 

foo = Y - 4 (1 - i) (1 - e--(l+i)y}. (3.11) 

This function satisfies the no-slip wall boundary condition and matches the 
first term of the inner expansion of the outer solution for large Y .  

Y) eZi7 + $To( Y) e4i7} 

The second-order problem is solved by taking 

Ylo = $A2 sin 22 {2$10( Y) + (3.12) 

and substituting into (3.8). The solutions are given, for example, by Stuart 

(3.13) 

and 
- 

= C, Y z + v - $  Y -ie-zy - #e-Y cos Y -e-=sin Y -+Ye-P sin Y .  (3.14) 

We set C, = 0 on the basis that an acceptable match to a secondary boundary 
layer can thereby be made. For further discussion of this point, the reader is 
referred to Riley (1967, 1965). 

For the case of a progressive wave (2.22), we let 

Too = {f,( Y )  e4(~+7)+f&( Y) e-i(z+7) 1, (3.15) 

whereto,( Y) is defined by (3.11). The equation for Ylo is given by (3.8) where 

(3.16) 

Let Ylo = ~ A ~ { $ , , (  y) + i$,,e2i@+7)- i$T oe -zi(x+7) 1 . (3.17) 

Then q510(Y) is given by (3.13), while the steady velocity is (Phillips 1966, 
equation 3.4.25) 

(3.18) 

As both (3.14) and (3.18) indicate, the steady induced flows fail to decay within 
the Stokeslayer. In the case of a standing wave, it will be demonstrated in the next 
section that the steady flow can be contained within a second boundary layer 
where a balance between buoyancy and diffusion exists. In  contrast, no steady 
vertical component of velocity is generated by the progressive wave, and so buoy- 
ancy naturally cannot be directly influential in determining the streaming out- 
side the Stokes layer. The outer flow problem would therefore be essentially 
similar to the flow induced near a wall by a free surface wave in a homogeneous 
fluid. Longuet-Higgins (1 960) discussed how the vorticity generated in the bound- 
ary layer diffuses outward until a steady state is reached on a time scale O(R) 
with respect to 7. This would exceed the time scale O(A*) over which a free oscil- 
lation decays with time, and so some forcing mechanism must be stipulated in 
order to define a steady-state problem. The reader is referred to Kelly & Vreeman 
(1970) for an analysis of a problem when thermal forcing occurs at the wall; 
the following discussion will be mainly restricted to the case of a standing wave. 

d$,,/dY = - 8 + Ye-Y(cos Y + sin Y) + e-P(2 cos Y - sin Y) - ge-zy. 
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4. The outer viscous region for a standing wave 
We now consider the behaviour of the steady, spatially periodic flow outside 

of the Stokes layer. The steady part ofY is of O(E) outside the wall layer. With 
reference to the vorticity equation (2.16) we note that if stratification were absent 
the outer flow would be governed by the biharmonic equation if e2 < A-l. This 
situation corresponds essentially to that studied by Rayleigh (1884). The second- 
ary flow would extend throughout a region of thickness &-l or H ,  depending upon 
which length is smaller. For e2 $ A-l, a secondary boundary layer, again for the 
homogeneous case, is possible whose thickness is O(e-lA-*), as demonstrated by 
Stuart (1966) and Riley (1965, 1967). In  this region, a balance is made between 
advection and diffusion. When stratification is present, another possible balance 
arises, namely, that between buoyancy and diffusion. This balance appears to be 
possible in a region whose thickness is O(A-+), i.e. somewhat greater than Stokes 
layer but typically much less than the width H .  This layer is analogous to the Ei 
( E  being the Ekman number) Stewartson layer in homogeneous rotating fluids 
(cf. Veronis 1967). 

We therefore introduce the variable 

z = A4-y (4.1) 

and define an appropriate stream function and temperature distribution in this 
region as 

$ = A sinx 1A-i Z cos 7 - A-t cos (7 - am) + O(A-l)} + eA-iYI(x, 2, 7) (4.2) 

and T = A cos x{A-f Z sin 7 + A-: cos (7 + $ 7 ~ )  + O(A-l)} + &(x, 2, T), (4.3) 

The terms in parentheses represent the lowest order term in the expansion of the 
inviscid solution together with the next order effect due to the Stokes layer (cf. 
(3.11) and (5.6)). As Z becomes small, we have from (3.14) 

Yr = -gA2Zsin2x. (4.4) 
Upon substitution of (4.2) and (4.3) into (2.16), cancelling terms which correspond 
to the linear inviscid solution, and applying (3.6) we can obtain 

We expand ' P I  and 01 as 

Y I  = + + A-N?;, g + 0(e2, eA-Q), (4.6a) 

(4.6b) 

The equation for Yi0 requires that Yio be steady, as it is in view of the condition 
(4.4). It is clear that O( 1)  terms in (4.5) will give an equation for Yio and that this 

el = ei0 + Ee:, + A-+ e;, + O(G, 
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equation will consist of a linear balance between buoyancy and diffusion if 
s2A* < 1. The range of validity for the solution to be discussed is then 

A-i < E < A-6. ( 4 . 6 ~ )  

The equation which is obtained by taking the mean with respect to time of the 
O( 1)  term is 

The temperature equation can be expressed as 

The O(A4) term in (4.8) requires that 6,& be steady. It will be demonstrated in the 
next section that the boundary condition at  the outer edge of the thermal Stokes 
layer is such that this is true. If the mean of the O( 1) terms in (4.8) is taken, with 
the restriction ( 4 . 6 ~ ) ~  we obtain 

Combining (4.9) and (4.7), we obtain 

If we let 

then 

Up& = - *A2 sin 2x q5s(Z), 

q5s - eAZ7 

(4.10) 

(4.11) 

1 & i43 
where A = ? & ,  (- ) Q 7  (Y)Q (4.12) 

and Q = {4P( 1 +a2)}*. (4.13) 

A solution, composed of the terms which decay with 2 and which satisfies the 
condition (4.4) as Z --f 0, is 

where K is arbitrary at  this stage. We note that $s decays to zero within the 
A-4 layer. In  comparison to Rayleigh's solution, it clearly indicates the strong 
inhibiting effect of gravity upon steady vertical motion in the stratified case. In  
comparison to the Riley-Stuart solution, it indicates the inhibiting effect of 
stratification upon separation as no solution of their type would be possible in 
homogeneous flow at those points at which advection of vorticity does not 
oppose diffusion. 

10 F L M  42 



146 R. E .  Kelly 

If we now define 

(4.15) 

0, is determined from (4.9) as 

8 =-- 
Q3 

$8 

FIGTJRE 1. The function $@), as defined by (4.9) for Q = 2.0. 

The constant K is determined by stipulating 8& approaches zero as 2 becomes 
small. If this were not true, we would have to solve the equation 

d2TldY2 = 0 

within the Stokes layer, together with the boundary conditions that T(0)  = 0 
and that T approaches a constant for large Y .  No such solution exists, and the 
resulting value of K is then found to be 

K = - 3/2Q. (4.17) 

With this result, $,(Z) and O,(Z) are shown in figures 1 and 2 for Q = 2. The 
buoyancy balance is clearly characterized by an oscillatory behaviour in the 
vertical direction of the induced mean motion. 

When E $ A-i, a balance between advection and diffusion would at first 
seem to be appropriate for the outer region, which would then have the character- 
istic length (eA*)-'. Buoyancy would exert only a higher order effect in this region, 
and so the governing equation for the mean flow in this region would be the same 
as for homogeneous flow, which has been discussed by Riley (1965). Riley obtained 
a solution to the resulting non-linear partial differential equation by expanding 
about a stagnation point of the steady flow where the flow is directed towards the 
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wall. If his series solution is then used to solve for a temperature field, one finds 
that the temperature grows as ( y / s )  at the outer edge of this region. Another 
region, with a characteristic length A-4, is again required. Buoyancy, advection, 
and diffusion appear in the vorticity equation appropriate for this third layer, 
and the equation is similar to (4.5) when ($A*) is of order unity. A numerical 
approach to the problem would appear to be required. 

4 s  

' t 
-0.2 -0.1 0 0.1 0.2 

08 

FIUURE 2. The function B,(Z) as defined by (4.14), for Q = 2.0. 

5. The Stokes layer solutions for the temperature distribution 
We have been able to delay detailed discussion of the thermal Stokes layer up 

to this stage because it plays an essentially passive role, responding to velocity 
fluctuations in the wall layer and to temperature fluctuations in the inviscid 
and outer boundary-layer regions. The outer boundary layer plays a crucial role, 
however, in determining the expansion of the temperature for the case of stand- 
ing waves (the reader is referred to a paper by Merkin (1 967) in which a somewhat 
similar result was obtained when a non-linear balance was struck in the outer 
region for a, flow induced by a cylinder withanunsteady temperature distribution). 
With reference to (3.4), we expand for a standing wave as 

B ( ~ ,  Y, = Boo + el, + eo,, + E~A+o, ,+ + o ( E 3 ~ + ) ,  (5.1) 

where Boo and el,+ must match, for large Y ,  to the leading terms of the inner 
expansions of (2.14) and (4.15)) respectively. The lowest order modification of 
the steady temperature distribution within the Stokes layer is therefore controlled 
by the outer boundary layer. For A-* < E < A-6, this effect is more important 
than any other boundary-layer process, at  least as far as the temperature is 
concerned. The vorticity equation remains unaffected by the buoyancy term up 
to O(eA-8). 

From (4.15)-(4.17) we have 
3YP 
8Q2 

B1*+(2, Y) = - - cos 2x 

10-2 
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as Y becomes large. From (3.4), it is clear that (5 .2 )  is the solution throughout 
the Stokes layer. 

The functions Boo and B,, satisfy the equation 

and (5.4) 

A solution of (5.3) which satisfies the condition O(x, 0 , ~ )  = 0 and matches 

Boo = - +A cos x {goo( Y )  ei7 + g&( Y) e-i7}, 
the outer solution is 

where 
(5.5) 

I n  order to solve (5.4), let 

Bl0 = iA2glo( Y )  + A2 cos 2xql0( Y )  - A2 cos 2x {glo( Y )  e2i7 + g&( Y )  e-2i7) 

+ Y )  eZiT + gl0( Y) e-2i7}, (5.7) 

where each of the functions must be zero at the wall. Upon substitution into 
(5.4), the solution for gl0( Y )  which matches (2.21) for large Y is found as 

1 - ~3 pe-(l+P')Y ( 1  - ~ $ 1  cos (1 - pi)  y + ZlO(Y) = y+ ~ ( 1  - P 2 )  2 ( 1 -  P2) + ( 1  + P+)sin ( 1  -P*) Y 

+ ( $p) Y e - y  cos Y - - e-y sin Y 
( 1  !P) 

The function (zl0( Y )  - Y )  is illustrated in figure 3 for two values of Prandtl 
number. This function represents the deviation within the wall region of the 
second-order mean-temperature distribution from the non-diffusive result. A 
maximum exists in this region, which suggests a mildly destabilizing influence. 

The function Qlo( Y )  is matched for large Y to the unsteady part of T!, (2.19),  
whereas a solution for glo( Y) can be obtained so that it approaches a constant 
for large Y and consequently causes only a higher order effect on the outer flow; 
the solutions are 

+- p4 Y,-(1+{) p t y  + (i - 1 )  (3 + e(-l+i) pby  
2 ( 1 - P )  4 ( 1 - P )  

(5.9) 
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where 

(1 - 2P)2 
( 1 - P ) -  

P2 + 3 + Pb + p j y  - 

P 
and g ( Y) = C3e-(1+i)(2P)*Y + ___ Ye-(l+i)y 

10 8 ( l - P )  

e-(l+i)P - ~ pb 

(1-4 ( 1 + W  e-(l+i)p*p+ ( 1 - i ) P  e-(l+i)y4\/z 

ye-cl+s Ph, 
1 - i  

8( 1 -P) (1  - 2 P )  8 (1 -P)  

i- 16(1 -P)  1642 (1 -P) 

+ 16(1- P )  (1 + 2 P t -  P) 

i - 1  2 

1-i 
1642'  

(5.11) 

(5.12) 

(1 -i)W -Pi) e-(l+i)(l+P*)y I 

where C -  

0.6 r 

0 2 4 6 8 10 12 14 

Y 

FIGURE 3. The behaviour of the second-order correction to  the mean temperature 
distribution within the boundary layer. 

The function glo( Y )  is of special interest, because it is forced in part by the 
steady velocity field. In  fact, the steady velocity field givesrise to the most rapidly 
growing part of Ql0( Y). The solution is 

gl0(y) = P - Y3-- 11P Y2+C4Y+C5+-  ( __ - '7 e-2y f -  (:I:) -__ Ye-Y cos Y 
4 8 16 1 - P  
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8( 1 - P )  ( 1 + P)2 
SinPtY- 

P 4 + 3  + ~ e-p'y 
8 ( 1 - P )  

(5.13) 

where C, is determined so that Qlo(0) = 0 but where C, can be determined only 
through the consideration of higher order effects in the outer boundary layer. 
The leading term in (5.13) matches to the O(Z3)  term in the inner expansion of 
(4.15) (the 0(Z2) term in that expansion is zero), but the term of O( Y )  in (5.13) 
would force us to revise the expansion (4.6a, b )  so as to include an O(A-k) term 
which does not depend on time. This modification, however, does not affect 
the determination of the lowest order solution in the outer boundary layer. 

The O(s2AS) term in (5.1) arises from the non-linear interaction of Yo, and 
el,+ and therefore fluctuates with the fundamental frequency. One can show that 
it grows as Y at the edge of the Stokes layer and therefore presumably matches 
to the O(e) term in the expansion (4.6b) and decays within the outer boundary 
layer. 

For the case of a progressive wave, where the streamfunction is given by 
(3.15), (3.17), we expand the temperature as in (5.1) with el,& = 02,& = 0. If welet 

e,, = - +iA{g,,( Y )  ec(z+T) + g~,(  Y )  e-(x+T)), (5.14) 

then goo( Y )  is given by (5.6). Further, if we let 

8,, = $A2&,( Y )  + 2A2g1,( Y )  ezt(z+T)+ 2A2gTo( Y )  e-2i(z+r), (5.15) 

Y )  is given by (5.8), allowing a match to (2.23), and glo( Y )  is given by 

The work was sponsored by the National Science Foundation, under Grants 
GA-849 and GK-4213. The author is indebted t o  a referee for his perceptive com- 
ments regarding the first draft of this paper. 

then 
(5.11). 
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